Menu ENN Search

Practical challenges of evaluating BSFP in northern Kenya

Summary of published study1

Beneficiaries of BSFP in Kenya

A mass or ‘blanket’ supplementary feeding programme (BSFP) was implemented by the World Food Programme (WFP) and partners in five northern districts of Kenya between January and April 2010. It was undertaken due to fears of an increase in the incidence of malnutrition as a result of seasonal food insecurity exacerbated by persistent drought. The five programme districts of Mandera, Marsabit, Samburu, Turkana and Wajir cover 45% of Kenya's total land area (Figure 1) but at the time, contained only 4.5% of the population of 28.87 million recorded in the 1999 census2.

An attempt to evaluate the impact of the food on children's anthropometric status was put in place in three districts. A recently published study set out to assess the quality of the data on the cohort of children studied in the evaluation and to propose methods by which it could be improved to evaluate future blanket feeding programmes. Reasons for the poor quality of the evaluation are identified.

BSFP intervention

The primary stated aim of the programme was to protect the nutritional status of an estimated 300,000 children aged 6–59 months, or 20% of the 1999 census population3. All children <110 cm in height were eligible for a ration of food plus any taller children whose mother insisted that they were <60 months of age.4,5

Rations of food provided by WFP were distributed on four occasions, each about 30 days apart, beginning in January 2010. They consisted of 7.5 kg of corn-soy blended flour (CSB) and 0.75 kg of vegetable oil to provide an average of 1,000kcal/day/child. The food was distributed by non-governmental agencies (NGOs) at the sites of pre-existing feeding programmes and at some extra sites, to improve local access.

An evaluation was undertaken to try to detect evidence for an effect of the rations on the anthropometric status of children in three main ways:

Evaluation sites selection and process

The rations of food were distributed initially at 540 sites in the districts of Mandera (99 sites), Marsabit (55), Samburu (101), Turkana (162) and Wajir (123) (Figure 1) by a group of eight NGOs led by Save the Children, UK (SCUK).

An arbitrary number of 25 food distribution sites were randomly selected for study in each of two adjacent districts, Mandera and Wajir, 26 sites operated by SCUK and 24 by Islamic Relief. At the request of the National Nutrition Technical Forum, 25 sites were also randomly selected in Turkana district, which is in a different livelihood zone and contains a different ethnic group, the Turkana (most people in Mandera and Wajir are Somali). Four agencies were responsible for collecting data in Turkana: Merlin (10 sites), Samaritan's Purse (4), IRC (1) and World Vision (10). Because of a delay in funding, World Vision did not collect data at their 10 sites.

The staff of each NGO was responsible both for distributing the food and for collecting data for the evaluation. All members of staff were given one day's theoretical training by SCUK on the BSFP, community mobilisation, organising distribution sites and on the evaluation methods, including sampling children and administering questionnaires. The five NGOs then organised two days practical training for their field staff according to an agenda specified in the programme guidelines6. All the NGO staff were nurses or nutritionists who were supposedly practiced at making anthropometric measurements, so no specific training on anthropometry was arranged.

The aim was to recruit up to a 10% sample of children at the first food distribution at each study site and then at the same sites, recruit all new children who were brought to claim a ration at the second and third food distributions, as they should not yet have received any supplementary food.

A power calculation using Stata 117 indicated that a sample size of 3,022 children could detect a 4% difference in the prevalence of wasting from 26% (the average prevalence reported in three previous surveys)8 over the period of intervention. This allowed for a design effect of 2 due to the clustering of children around distribution sites, 25% drop-out, and assuming a power of 80% and a two-sided statistical significance of P<0.05.

Each child was weighed to a precision of 0.1 kg on electronic scales (Uniscale, UNICEF) and measured to a precision of 0.1 cm, supine if <87 cm and standing if =87 cm on locally made stadiometers, according to Kenya Government guidelines9.

Each caregiver was given a ration card for the child with a unique identification number created from the site code and the child's serial number. These numbers were also recorded in a register book for each site and on the data forms for each child at each visit to collect a ration and were used to link data. Ration cards were given only at sites taking part in the evaluation.

The date of birth and date of visit were used to estimate each child's age in months at enrolment and z-scores of height-for-age, length-for-age and weight-for-height were calculated using a macro for Stata 1110 published by the WHO11. This flags values of weight-for-age that are >5 and <-6 S.D., values of height-for-age that are >6 and <-6 S.D. and values of weight-for-height that are >5 and <-5 S.D. because the underlying data are likely to be wrong.

Assessment of evaluation data quality

In order to assess the quality of the data collected in the evaluation, five indicators were used:

Findings of study

Of the 3,544 children enrolled, 483 (13.6%) did not return to collect a fifth ration. Of the 3,061 children who did return, 196 (6.4%) had a different name and 200 (6.5%) had a possibly different name, indicating that perhaps up to 13% of mothers had brought a different child to collect the last ration. There were three names missing.

Figure 2 shows the age distribution of 3,397 children aged 6–59 months whose age was recorded at enrolment compared with the expected age distribution based on the 2009 census in the same three districts12. The expected number of children aged 6–11 months was estimated by dividing by two the numbers recorded for children aged 0–11 months. Figure 2 shows that there were 89% more children than expected aged 12–23 months and 56% fewer children aged 48–59 months, suggesting a bias towards younger children. Only 93 children (2.63%) were older than 60 months (not shown in Figure 2), which seems unlikely if the entry criterion to the programme was based on a height of <110 cm rather than age and should have included older but stunted children. There were no statistically significant differences in the mean reported age of children enrolled at the first, second or third food distributions.

The WHO macro to calculate anthropometric indices flagged baseline values of weight-forheight, height-for-age and weight-for-age for 237 children (6.67%). of these, 67 (2.56% of the total) were weight-for-height, suggesting that a measurement of weight or height was incorrect. The same values were flagged for fewer children at the fifth food distribution: 113 (3.18%) had any index flagged while 35 (1.17%) had the value of weight-for-height flagged.

Figure 3 shows the distribution of the difference in age in months recorded for 3,061 children at enrolment and at the fifth food distribution, an average of 97 days later (range 16–135 days), depending on when children were enrolled. Only 21.23% of children were recorded as having the same month of age, 23.72% were 1 to 3 months younger or older, 25.22% were 4 months or more younger, and 29.79% were four months or more older. In summary, 44.95% of children were within ±3 months of the same age and 55.05% were =4 or =4 months different in age.

Figure 4 shows the distribution of the difference in height of 3,032 children measured at enrolment and the fifth distribution of whom 66.09% were within a range of >-1 to <4 cm, 15.77% were >1 cm shorter, and 18.14% were =4 cm taller.

Of the 2,640 children who were considered by their name to be the same on both occasions, data on only 902 children (34.17%) were considered to be acceptable based on both their stated age (±3 months different) and length or height (>-1 or =4 cm different) at the two instances they were seen. This meant that data on nearly two thirds of children were of questionable quality. Because of these discrepancies, no further analysis was done to assess the impact of the feeding programme.

Any attempt to estimate the impact of supplementary food on weight gain requires that each child is measured twice, at the start and end of the programme to obtain paired measurements, and that accurate data on age is obtained if anthropometric indices other than weight-for-height are to be calculated. The data collected during the present evaluation in northern Kenya indicated that a large proportion of children were not the same at the first and fifth food distribution and that the age of many children was not given nor estimated consistently and so was probably inaccurate. There are a number of likely reasons for this, including the possibility that mothers did not bring the enrolled child to collect the fifth and final ration, systematic bias or errors in estimating age, inconsistent estimates of age on separate occasions, and errors in making anthropometric measurements, in recording data, and in data entry.

The age distribution shown in Figure 2 is unlike a typical age pyramid and suggests that many mothers, who made up 92% of the caregivers at enrolment, were either not giving or not estimating correctly the age of their child, perhaps to ensure that they obtained a ration of food. The fact that about 40% of all children were either shorter by 1 cm or more or taller by 3 cm or more suggests that a substantial proportion of caregivers did not bring the same child to collect the fifth ration, although some differences could be measurement errors made by busy staff.

It is to be expected that parents will make every effort to obtain a ration of food for their children during a food shortage and the many years of food insecurity in this part of Kenya have led to a degree of dependency on humanitarian assistance. An eligibility threshold of <110 cm in height13 was applied to try to eliminate a reason for parents to be untruthful about giving the correct age of their child. This did not seem to work, perhaps because community mobilisers did not understand or make it clear to parents, because mothers did not understand, or because mothers were mistrustful of a different criterion of eligibility for health services from the usual, which is age.

Factors that compromised data quality

Several things compromised data quality:

Lessons learned

The experiences described here offer useful lessons that could be applied to improve the quality of data in future evaluations of blanket feeding programmes in Kenya and elsewhere.

Beneficiaries of BSFP in Kenya

First, the evaluation should be put in place as the intervention is being planned so that the evaluation is a part of the programme, not an external component. Both require preparation, swiftness and adequate funding.

Second, community mobilisers need to explain clearly and effectively to potential beneficiaries the criterion for eligibility: height <110 cm, not age <59 months - the usual threshold for health programmes. Ideally this criterion would be used for all programmes because it is simple, objective and transparent, and would include stunted children older than 5y, who could also benefit from most interventions. The disadvantage of using height is that there is no easily calculated denominator to estimate both the numbers of eligible children and coverage, whereas a denominator based on age can be estimated from census data. As an estimate of coverage is an important indicator of the effectiveness of an intervention, a separate survey would be necessary at additional expense.14,15

Third, every study child ideally should be identified either using a digital photograph or perhaps using a fingerprint reader, either in a personal digital assistant (PDA) or connected to a laptop computer, to confirm their identity at subsequent contacts. Battery powered PDAs could also be used to collect, store and compare data in the field, so that widely differing anthropometric measurements could be flagged and checked immediately. Such devices require a capital outlay, a software programmer and field testing before deployment, which is expensive. But this could improve data quality and speed up the process of analysis and reporting, as well as increasing the validity of the evaluation. If suitable equipment is not available, then key data should be copied onto ration cards to act as a check, including the estimated date of birth and the first height and weight. Neither process would guarantee that the same child is seen on all occasions, but any substitute could be identified on the spot.

Fourth, the staff doing the evaluation should be different from the staff delivering the ration cards, food or other interventions, so that both jobs are done as well as possible in an often chaotic and busy environment in which agitated parents demand attention. A dedicated evaluation team would require additional funding, an issue not addressed here, but the compromised evaluation also represents a waste of resources, as well as the time of staff and mothers. The evaluation staff also require specialised training in anthropometric measurements, even if they have done them many times before, because both accuracy and precision are required and should not be assumed.

Finally, data analysis should be done as quickly as possible in the field, so that systematic errors such as rounding can be identified and rectified by re-training or reorganisation of procedures. If all data are entered in the field onto PDAs, the confirmation of each entry would duplicate the process of double data entry. Data could also be merged from different field teams and analysed quickly in the field using batch files written for statistical software. By reporting the problems and lessons learned from this evaluation of a BSFP, it is hoped that future evaluations will be better planned and implemented and may provide plausible evidence of a benefit to children's nutritional status.

Show footnotes

1Hall A, Oirere M, Thurstans S, Ndumi A, Sibson V, 2011. The Practical Challenges of Evaluating a Blanket Emergency Feeding Programme in Northern Kenya. PLoS ONE 6(10): e26854. doi:10.1371/journal.pone.0026854

2Kenya National Bureau of Statistics (2007). Statistical Abstract Nairobi: Kenya National Bureau of Statistics.

3Save the Children (2009) Blanket supplementary feeding programme monitoring and evaluation guidelines. Nairobi: Save the Children. p58.

4See footnote 2

5World Health Organization (2000) The management of nutrition in major emergencies. Geneva: World Health Organization. p236.

6See Footnote 3

7StataCorp (2010) Stata Statistical Software: Release 11.0. College Station, Texas, USA: StataCorp.

8ACF USA (2009) Anthropometric and retrospective mortality surveys in the Districts of Mandera, Kenya. NairobiKenya: Action contre la Faim.

9See Footnote 3

10See Footnote 6

11WTO (2011) Macros to analyse growth data for the age group 5-19 years.Geneva: World Health Organization. Available: Accessed 2011 Oct 9.

12Kenya National Bureau of Statistics (2011) Kenya National Bureau of Statistics The 2009 Kenya Population and Housing Census.Volume 1C.Population distribution by age, sex and administrative units. Nairobi. 546 p.

13See Footnote 4

14Myatt M, Feleke T, Sadler K, Collins S (2005) A field trial of a survey method for estimating the coverage of selective feeding programmes. Bull World Health Organ 83: 20–26.

15Sadler K, Myatt M, Feleke T, Collins S (2007) A comparison of the programme coverage of two therapeutic feeding interventions implemented

More like this

FEX: Impact evaluation of BSFP during a nutrition emergency in Kenya

By Cyrus Shahpar and Leisel Talley Cyrus Shahpar is a medical epidemiologist with the Emergency Response and Recovery Branch at the US Centres for Disease Control and...

FEX: Effect of adding RUSF to ageneral food distribution on child nutritional status and morbidity: a cluster randomised controlled trial

Summary of research1 Child during appetite test at a health facility offering treatment in Monrovia, Liberia The authors of a recent study hypothesized that including a daily...

FEX: Feasibility and effectiveness of preventing child malnutrition with local foods in Kenya

Summary of research1 One of the researchers (Rebecca Ashton) weighs a child The findings of a study to establish the operational feasibility and effectiveness of using locally...

FEX: The Targeted Supplementary Feeding Programme (TSF)

By Jutta Neitzel TSF distribution in Degehabur, Somali Region Jutta Neitzel is the Head of the Nutrition and Education Section at WFP Ethiopia. She has worked for the...

FEX: High levels of mortality, malnutrition and measles amongst displaced Somali refugees in Dadaab, Kenya

Summary of published research1 Location: Dadaab, Kenya What we know already: Routine vaccination of children aged 6 months to 15 years, supplemented by mass vaccination...

FEX: Community-based Therapeutic Care (CTC)

Malnourished Child being fed with ready-touse therapeutic food (RUTF) Summary of published research1 Bedawacho Woreda is a district in Ethiopia, 350 km south of Addis Ababa,...

FEX: Implications of 65 cm height cut-off as age proxy in Bangladesh

Summary of published research1 Location: Bangladesh What we know: Age data for children aged 6 to 59 months is often not available in poor, migrant or conflict affected...

FEX: Evaluation of the Supplementary Feeding Programme carried out in Marsabit District, Kenya, April-November 1997

Vincent Brown (Epicentre), Sylvia Carbonell (Médecins Sans Frontières) MSF implemented a nutrition rehabilitation programme in Marsabit District between April...

FEX: WFP Targeted Supplementary Feeding in Ethiopia

Breastfeeding class in progress at 2006 Child Survival SFP site Summary of evaluation1 In October 2004, the Executive Board of the United Nations (UN) World Food Programme...

FEX: Lipid-Based Nutrient Supplement Research Network Meeting

By Sarah Style Sarah Style is part of the ENN team working with UNHCR on the Anaemia Control, Prevention and Reduction Project In April 2011, the International Lipid-Based...

en-net: Blanket Supplementary Feeding Program(BSFP) Does it need anthropometric measurements?

Dear Team, we are in an emergency sitruation where GAM rate is 30%, Food Insecurity status(IPC 4), and crisis. As a response to that, one of our emergency response is General...

FEX: MUAC Versus Weight-for-Height in Assessing Severe Malnutrition

Summary of published paper1 An infant having MUAC measured during the study in Kenya Current WHO guidelines for the management of severe malnutrition in children recommend...

FEX: Can height-adjusted cut-offs improve MUAC’s utility as an assessment tool?

By Michel Van Herp, An Verwulgen, Bérengère Leurquin, and Pascale Delchevalerie Michael Ven Herp, Bérengère Leurquin, An Verwulgen & Pascale Delchevalerie Michael Ven Herp is...

FEX: Adaptations to community-based acute malnutrition treatment during the COVID-19 pandemic

View this article as a pdf Lisez cet article en français ici By Maria Wrabel, Sarah King and Heather Stobaugh Maria Wrabel is CMAM Adaptations Project Officer with...

FEX: The effect of age rounding on weight-for-age z-scores: Evidence from Sub-Saharan Africa

View this article as a pdf Lisez cet article en français ici Ifrah Fayyaz is a Healthcare Data Analyst at Milliman. Zachary Tausanovitch is a Data Science Lead...

FEX: Improving nutrition information systems: lessons from Kenya

By Lucy Maina-Gathigi, Louise Mwirigi, Veronica Imelda, Dr Oleg Bilukha, Eva Leidman, Lucy Kinyua and Kibet Chirchir View this article as a pdf Lucy Maina-Gathigi is a...

FEX: Constraints to achieving Sphere minimum standards for SFPs in West Darfur: a comparative analysis

A view of Mornei camp The current conflict in Sudan's westernmost state of Darfur began in early 2003, although most humanitarian agencies only gained access to the area and...

FEX: Community Supplementary Feeding Programme (CSFP) Evaluation in Zimbabwe

The first Field Exchange carried an article about the CSFP in Zimbabwe: Nutrition in commercial farms; finding the right plaster for the wound. Since then the findings of a...

FEX: An analysis of Fresh Food Voucher Programme piloted in Ethiopia

By Pankaj Kumar, Anne Marie Mayer and Elizabeth Molloy Pankaj Kumar has been working in Ethiopia with Concern Worldwide since 2010. Previously he has worked in Zambia,...

FEX: Blanket BP5 distribution to under fives in North Darfur

By Hanna Mattinen, ACF Since 2005, Hanna Mattinen has been Food Aid Advisor at the Action contre la Faim (ACF) headquarters, focusing on policy and operational issues around...


Reference this page

Practical challenges of evaluating BSFP in northern Kenya. Field Exchange 42, January 2012. p27.



Download to a citation manager

The below files can be imported into your preferred reference management tool, most tools will allow you to manually import the RIS file. Endnote may required a specific filter file to be used.